网站首页 / 育儿 / 正文

奇数是什么意思(偶数和奇数是什么意思)

时间:2022-04-01 04:00:08 浏览:10次 作者:用户投稿 【我要投诉/侵权/举报 删除信息】
奇数是什么意思

一.概念描述

现代数学:奇数亦称单数,是一类重要的数,即不能被2整除的整数。奇数常表示为2n+1或2n-1,其中n是整数。偶数亦称双数,是一类重要的数,即能被2整除的整数。偶数常表示为2n,其中n是整数。偶数的和、差、积都是偶数。

小学数学:2004年北京版教材第10册第51页提出:能被2整除的数叫作偶数;不能被2整除的数叫作奇数。2013年人教版教材五年级下册第12页提出:自然数中,是2的倍数的数叫作偶数(0也是偶数),不是2的倍数的数叫作奇数。

二.概念解读

在自然数中,不是奇数(又称单数),就是偶数(又称双数)。一般来说,偶数表示为2n;奇数表示为2n+1,n为整数。

为了国际交流的方便,1993年颁布的《中华人民共和国***标准》《量和单位》的第311页规定:自然数包括0。这样0也自然成为偶数。0是一个个特殊的偶数。

小学规定0为最小的偶数,1是最小的奇数。但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。像-2, -4, -6,-8,-10,-12等都是负偶数;出现了负奇数时,1也就不是最小的奇数了。像-1,-3,-5, -7,-9, -11等都是负奇数。

偶数包括正偶数、负偶数和0。奇数包括正奇数和负奇数。

在十进制里,可以用看个位数的方式判定该数是奇数还是偶数:个位为1、3、5.7、9的数是奇数;个位为0、2、4、6、8的数是偶数。

关于奇数和偶数有如下一些性质:

①两个连续整数中必有一个是奇数,一个是偶数。

②两个整数和的奇偶性---奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数。一般地,奇数个奇数的和是奇数,偶数个奇数的和是偶数,任意个偶数的和为偶数。

③两个整数差的奇偶性---奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,偶数-奇数=奇数。

④两个整数积的奇偶性---奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。一般地,在整数连乘当中,只要有一个因数是偶数,那么其积必为偶数;如果所有因数都是奇数,那么其积必为奇数。

⑤两个整数商的奇偶性---在能整除的情况下,偶数除以奇数得偶数,偶数除以偶数可能得奇数,也可能得偶数,奇数不能被偶数整除。

⑥若a、b为整数,则a+b与a-b有相同的奇偶性。

⑦除2以外,所有的正偶数均为合数。

⑧相邻两个整数的和是奇数,相邻两个整数的积是偶数。

⑨如果一个整数有奇数个约数,那么这个数一定是完全平方数(像1、4、9、16、25等都是完全平方数)。如果一个数有偶数个约数,那么这个数一定不是完全平方数。

⑩著名数学家毕达哥拉斯发现有趣的奇数现象:将奇数连续相加,每次的得数正好是平方数。如:

1+3= 2平方2

1+3+5= 3平方2

1+3+5+7 =4平方2

1+3+5+7+9=5平方2

1+3+5+7+9+11= 6平方2

1+3+5+7+9+11+13=7平方2

1+3+5+7+9+11+13+15 = 8平方2

1+3+5+7+9+11+13+15+17=9平方2

四.教学建议

①奇数和偶数的内容,教材安排在“2的倍数的特征”这个内容里。教学中,多数教师都是把奇数和偶数与“2的倍数的特征”的内容安排在一节课完成。

我们知道,学生对奇数和偶数并不陌生,他们早在一年级时就已认识了单数和双数,有些学生还发现了单数和双数个位上数的特征。因此,学生掌握奇数和偶数的概念应该说是很轻松的。

②有些教师把奇数和偶数的内容单独安排一节课,重点让学生运用奇数和偶数的特点解决一些问题,感受奇数和偶数的一些性质。比如让学生排成一队进行1、2连续报数,第一个人报1,第二个人报2,第三个人报1,第四个人报2 ......如果这样一直报下去,第15个人报几?第24个人报几呢?再比如有一个杯子,杯口朝上,如果翻动一次杯子杯口朝下,翻动两次杯子杯口朝上,这样连续地做下去,翻动第10次时,杯口是朝上还是朝下?翻动第15次呢?

这样使学生感受到奇数和偶数的性质能帮助我们很快地解决问题,同时意识到学习奇数和偶数,了解它们的一些性质是很有必要的。

四.推荐阅读

《小学数学知识树》(刘开云、李燕燕,北京大学出版社,2008)

该书第一部分《数与运算》的第二章《数的整除》中介绍了与奇数和偶数相关的知识。

版权声明:
本文内容由互联网用户自发贡献,该文观点仅代表作者本人,因此内容不代表本站观点、本站不对文章中的任何观点负责,内容版权归原作者所有、内容只用于提供信息阅读,无任何商业用途。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站(文章、内容、图片、音频、视频)有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至353049283@qq.com举报,一经查实,本站将立刻删除、维护您的正当权益。